Structural determinants of murine leukemia virus reverse transcriptase that affect the frequency of template switching.
نویسندگان
چکیده
Retroviral reverse transcriptases (RTs) frequently switch templates within the same RNA or between copackaged viral RNAs to generate mutations and recombination. To identify structural elements of murine leukemia virus RT important for template switching, we developed an in vivo assay in which RT template switching within direct repeats functionally reconstituted the green fluorescent protein gene. We quantified the effect of mutations in the YXDD motif, the deoxynucleoside triphosphate binding site, the thumb domain, and the RNase H domain of RT and hydroxyurea treatment on the frequencies of template switching. Hydroxyurea treatment and some mutations in RT increased the frequency of RT template switching up to fivefold, while all of the mutations tested in the RNase H domain decreased the frequency of template switching by twofold. Based on these results, we propose a dynamic copy choice model in which both the rate of DNA polymerization and the rate of RNA degradation influence the frequency of RT template switching.
منابع مشابه
Altering the intracellular environment increases the frequency of tandem repeat deletion during Moloney murine leukemia virus reverse transcription.
During retroviral DNA synthesis reverse transcriptase frequently performs nonrequired template switches that can lead to genetic rearrangements or recombination. It has been postulated that template switching occurs after pauses in the action of reverse transcriptase. Hence factors which affect pausing, such as polymerization rate, may affect the frequency of template switching. To address the ...
متن کاملAntiretroviral drug resistance mutations in human immunodeficiency virus type 1 reverse transcriptase increase template-switching frequency.
Template-switching events during reverse transcription are necessary for completion of retroviral replication and recombination. Structural determinants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that influence its template-switching frequency are not known. To identify determinants of HIV-1 RT that affect the frequency of template switching, we developed an in vi...
متن کاملFrequency of direct repeat deletion in a human immunodeficiency virus type 1 vector during reverse transcription in human cells.
Retroviral genetic rearrangements can result from reverse transcriptase template switching. Most published data suggest that errors such as base misincorporation occur at similar frequencies for HIV-1 and for simple retroviruses such as spleen necrosis virus (SNV) and murine leukemia virus (MuLV). However, previous reports have suggested that template switch-mediated recombination is much more ...
متن کاملDynamic copy choice: steady state between murine leukemia virus polymerase and polymerase-dependent RNase H activity determines frequency of in vivo template switching.
We recently proposed a dynamic copy-choice model for retroviral recombination in which a steady state between the rates of polymerization and RNA degradation determines the frequency of reverse transcriptase (RT) template switching. The relative contributions of polymerase-dependent and polymerase-independent RNase H activities during reverse transcription and template switching in vivo have no...
متن کاملEffect of distance between homologous sequences and 3' homology on the frequency of retroviral reverse transcriptase template switching.
Deletion of direct repeats in retroviral genomes provides an in vivo system for analysis of reverse transcriptase (RT) template switching. The effect of distance between direct repeats on the rate of deletion was determined for 16 murine leukemia virus (MLV)-based vectors containing a 701-bp direct repeat of overlapping fragments of the herpes simplex virus thymidine kinase gene (HTK). The dire...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 74 15 شماره
صفحات -
تاریخ انتشار 2000